
 
 

  
Abstract— Computing the optical flow of a sequence of 

images still remains a challenge in low-level video processing. 
Till present, none of the existing techniques has sufficiently 
generated accurate and dense optical flow fields to robustly 
represent video motion. In this paper we implement the optical 
flow algorithms through different lengths of displacements that 
exist in video motion of natural objects. We investigate the 
outcome of the differential optical flow algorithms based on 
Lukas-Kanade, Horn-Schunck and Brox’s warping techniques. 
Experiments on natural images show that the warping 
technique produces smoother and consistent pattern of optical 
flow compared to the outputs of Lukas-Kanade and 
Horn-Schunck. The behaviors of optical flow fields for each 
algorithm can be observed accordingly with respect to their 
displacements. 
 

Index Terms— Optical flow, Horn-Schunck algorithm, 
Lukas-Kanade algorithm, warping technique.  
 

I. INTRODUCTION 
Estimating optical flow plays an important role in detecting 
movements of objects from a sequence of images.  Baron et 
al. [1] regroup major optical flow techniques into 4 classes. 
They are differential techniques; region-based matching, 
energy based methods and phased based approaches. In this 
comparison the differential techniques perform with lesser 
average errors. In addition, these differential techniques 
compute faster thanks to their simple set of linear equations 
as described by Alireza and David [2]. In this paper, we 
implement differential approaches mainly the original 
Horn-Shunck[3] and Lukas Kanade[4] algorithms, in 
comparison with the Brox’s warping technique[5]. Natural 
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images are used without implementing any pre-processed. 

II. PREVIOUS WORK 

A. The optical flow constraint equation  
Most of the optical flow methods assume that the image 

objects keep the same intensity value under motion for at 
least a short period of time, expressed as follow: ∀(x,y)∈Ω, 
∀t∈[0,T], 

),,(),,( dttdyydxxItyxI +++=                                 (1) 
Thus, the optical flow constraint equation (OFCE) is 

obtained by using Taylor expansion on (1) and dropping its 
nonlinear terms. The (OFCE) is expressed as follow: 

0=++ tyx IvIuI                                                              (2) 

where ),( vu  represent the optical flow vectors ( )dt
dy

dt
dx ,  

and ),,( tyx III  represent the derivatives of image intensities 

at coordinate ),,( tyx . 
 

   B. Regularization techniques 
 This single equation (2) with two unknowns poses an 
aperture problem as describe by Tikhonov et al [6][7]. They 
regularize the ill-posed equation by incorporating prior 
information to the equation. Generally, smoothness 
assumptions on the solution are used in the optimization 
procedure. In computer vision, the (OFCE) is replaced by the 
following minimization problem: 

( ) 0,
,

min
=∫ ∫x y

dxdyvuE
vu

,              (3) 

where rd EEE ⋅+= α . Here ( ) ( )2, tyxd IIIvuE ++= represents 

the data term and rE represents a regularization term. The 
parameter α is a positive scalar to trade-off the influence of 

rE over dE . In practice, it requires interactive adjustment to 

find the best value of α. Depending on the choice of rE , 
some previously used terms such as quadratic smoother by 
Horn and Shunck [3], oriented smoother by Lukas Kanade[4] 
and anisotropic smoother by Brox [5]. 
 

   C. Horn-Schunck algorithm 
 Horn and Schunck [3] assumed as an additional constraint 
that the optical flow is varying smoothly with neighboring 
object points that have almost the same velocity. This 
corresponds to a standard choice of rE to be the following 
isotropic regularizer: 

( )22
2
1 ||||),( vuvuEr ∇+∇= .         (4) 
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Hence, two elliptic PDEs are obtained from (3) as expressed 
here-after: 
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This coupled system is symmetric in the two components of 
the velocity u and v. Horn-Schunck solve these two equations 
simultaneously by using block Gauss-Seidel relaxation in 
order to capture the coupling effect between them, expressed 
as 
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where ( )vu,  represent an average of the neighboring points 
to ( )vu, . The images of optical flow are computed using the 

first-order differentials of ( )tyx III ,, , which have been 
approximated with the neighboring points in 
successive-image 
quadrants:
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   D. Lukas-Kanade algorithm 
 Lukas and Kanade [4] assumed as an additional constraint 
that the optical flow is varying smoothly with neighboring 
object points that have exactly the same velocity. The least 
squares estimator has been adapted in (3) to minimize the 
squared error, expressed as: 

2][)(),( tyx
x

LK IvIuIxgvuE ++= ∑
r

r ,          (8) 

where )(xg r
 is the Gaussian weighting function that 

determines the support of the centered estimator. Thus, two 
PDEs are obtained from (3) expressed as: 

0][)(),(

0][)(),(

2

2

=++=
∂

∂

=++=
∂

∂

∑

∑

tyyxy
x

txyxx
x

IIIuIvIxg
v

vuE

IIIvIuIxg
u

vuE

r

r

r

r

         (9) 

Lukas-Kanade solve these equations using Least Mean 
Square estimation: 
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The images of optical flow are computed using partial 
derivatives between pixels in the x, y and t directions: 
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 E. The Brox’s warping algorithm 
 Brox [5] assumed 3 additional constraints in (3). Firstly, 
the gradient consistency assumption allows small variations 
in grey-level. This leads to the equation below: 

∫ ∇−+∇+−+= dxxIwxIxIwxIEd
22 |)()(||)()((| γψ   (12) 

Secondly, the piecewise smooth flow field assumption 
estimates the displacement of a point only locally. It can be 
expressed as: 

∫ ∇+∇= dxvuE r )|||(| 2
3

2
3ψ          (13) 

Finally, a multi-scale approach is used in order to find global 
minimum by down-sampling the images. It is performed 
during the linearization of (12) and (13) using 
Euler-Lagrange equations, expressed as: 
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Common numerical method such as Gauss-Siedel or SOR 

iterations can be used to solve the above equation; with the 
expressions of I that can be computed by means of bilinear 
interpolation as demonstrated in Horn-Schunck approach. 
 
 

III. EXPERIMENTS RESULTS 
For comparison purposes, we have implemented 

Horn-Schunck, Lukas-Kanade and warping algorithms using 
their best appearance adjustments. The testing sequences are 
obtained from a moving box with size 256x190 on a 
conveyer belt with various speeds of vertical displacement. 
We point out that all tested images were neither 
pre-smoothed nor hierarchal filtered before processing in 
order to observe the real outcome of each algorithm. The 
flow of the tested box is as shown in Figure 1using the 
computer specification of AMD 
Turion™64x2,1.181GHz,1.46GB of RAM. The estimated 
optical flow fields are illustrated in Figure 2.  
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Fig. 1(a),(b) and (c) show the movement of  the box. 

 
 
 
 

Horn-Schunck Lukas-Kanade Warping 

   
Total time taken = 1.936510 Total time taken = 6.781360 Total time taken = 2.224532

i)Displacement = 2 pixels 
 

Total time taken = 2.001442 
 

Total time taken = 6.869587 Total time taken = 2.167259

ii)Displacement = 6 pixels 
 

   
iii)Displacement = 10 pixels 

 
 

Fig. 2  The optical flow fields



 
 

The error measurement of optical flow fields is computed 
as equation (15). 
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The error measurement of optical flow fields against 
vertical object displacement is illustrated as below 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

IV. DISCUSSION AND CONCLUSION 
We have compared differential optical flow fields from 
Horn-Schunck, Lukas-Kanade and Brox’s warping 
techniques. The implementation on natural images of rigid 
object using various displacements has revealed the 
drawbacks of each approach regardless the improvement 
assumptions taken in the algorithms. The Horn-Schunck 
algorithm aims for better smoothing effect by providing 
denser fields compared to others. Within large range of 
object displacements, it provides consistent fields of 
optical flow. However they are very sensitive to errors 
derived from the variations of their neighboring points. On 
the other hand, the assumption of same neighboring 
velocities of optical flow in Lukas-Kanade only applies on 
small displacements. On larger object displacements, the 
fields deviate exponentially from their real displacements. 
Last but not least, the Brox’s warping technique provides 
consistent density of fields with robust field orientations. 
However the local and global smoothing processes have 
rapidly increased the complexity of the algorithm. As a 
result it consumes greater execution time. Future work will 
be focused on reducing the time of execution so that the 
optical flow can be implemented in real-time process. 
Thus a novel, simpler but efficient regularization 
technique is inevitable.  
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Fig. 3: The standard deviation of optical flow fields against 

 
 


